3.5.70 \(\int \frac {x^3}{(d+e x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [470]

3.5.70.1 Optimal result
3.5.70.2 Mathematica [A] (verified)
3.5.70.3 Rubi [A] (verified)
3.5.70.4 Maple [B] (verified)
3.5.70.5 Fricas [A] (verification not implemented)
3.5.70.6 Sympy [F]
3.5.70.7 Maxima [F(-2)]
3.5.70.8 Giac [A] (verification not implemented)
3.5.70.9 Mupad [F(-1)]

3.5.70.1 Optimal result

Integrand size = 40, antiderivative size = 271 \[ \int \frac {x^3}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=-\frac {3 \left (3 c d^2+a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^2 d^2 e^3}-\frac {2 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3 \left (c d^2-a e^2\right ) (d+e x)}+\frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c d e^3}+\frac {3 \left (5 c^2 d^4+2 a c d^2 e^2+a^2 e^4\right ) \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c^{5/2} d^{5/2} e^{7/2}} \]

output
3/8*(a^2*e^4+2*a*c*d^2*e^2+5*c^2*d^4)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/ 
c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/c^(5/2)/d 
^(5/2)/e^(7/2)-3/4*(a*e^2+3*c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2) 
/c^2/d^2/e^3-2*d^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/e^3/(-a*e^2+c*d 
^2)/(e*x+d)+1/2*(e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/e^3
 
3.5.70.2 Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.02 \[ \int \frac {x^3}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\sqrt {c} \sqrt {d} \sqrt {e} \left (3 a^3 e^5 (d+e x)+a^2 c d e^3 \left (4 d^2+5 d e x+e^2 x^2\right )+c^3 d^4 x \left (-15 d^2-5 d e x+2 e^2 x^2\right )-a c^2 d^2 e \left (15 d^3+d^2 e x-4 d e^2 x^2+2 e^3 x^3\right )\right )+3 \left (5 c^3 d^6-3 a c^2 d^4 e^2-a^2 c d^2 e^4-a^3 e^6\right ) \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )}{4 c^{5/2} d^{5/2} e^{7/2} \left (c d^2-a e^2\right ) \sqrt {(a e+c d x) (d+e x)}} \]

input
Integrate[x^3/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]
 
output
(Sqrt[c]*Sqrt[d]*Sqrt[e]*(3*a^3*e^5*(d + e*x) + a^2*c*d*e^3*(4*d^2 + 5*d*e 
*x + e^2*x^2) + c^3*d^4*x*(-15*d^2 - 5*d*e*x + 2*e^2*x^2) - a*c^2*d^2*e*(1 
5*d^3 + d^2*e*x - 4*d*e^2*x^2 + 2*e^3*x^3)) + 3*(5*c^3*d^6 - 3*a*c^2*d^4*e 
^2 - a^2*c*d^2*e^4 - a^3*e^6)*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqr 
t[e]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])])/(4*c^(5/2)*d^(5/ 
2)*e^(7/2)*(c*d^2 - a*e^2)*Sqrt[(a*e + c*d*x)*(d + e*x)])
 
3.5.70.3 Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 274, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.175, Rules used = {1213, 25, 2192, 27, 1160, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{(d+e x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \, dx\)

\(\Big \downarrow \) 1213

\(\displaystyle -\frac {\int -\frac {d^2-e x d+e^2 x^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{e^3}-\frac {2 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^3 (d+e x) \left (c d^2-a e^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {d^2-e x d+e^2 x^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{e^3}-\frac {2 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^3 (d+e x) \left (c d^2-a e^2\right )}\)

\(\Big \downarrow \) 2192

\(\displaystyle \frac {\frac {\int \frac {e \left (2 d \left (2 c d^2-a e^2\right )-e \left (7 c d^2+3 a e^2\right ) x\right )}{2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 c d e}+\frac {e x \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 c d}}{e^3}-\frac {2 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^3 (d+e x) \left (c d^2-a e^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {2 d \left (2 c d^2-a e^2\right )-e \left (7 c d^2+3 a e^2\right ) x}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{4 c d}+\frac {e x \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 c d}}{e^3}-\frac {2 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^3 (d+e x) \left (c d^2-a e^2\right )}\)

\(\Big \downarrow \) 1160

\(\displaystyle \frac {\frac {\frac {3 \left (a^2 e^4+2 a c d^2 e^2+5 c^2 d^4\right ) \int \frac {1}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 c d}-\left (\frac {3 a e^2}{c d}+7 d\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c d}+\frac {e x \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 c d}}{e^3}-\frac {2 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^3 (d+e x) \left (c d^2-a e^2\right )}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {\frac {\frac {3 \left (a^2 e^4+2 a c d^2 e^2+5 c^2 d^4\right ) \int \frac {1}{4 c d e-\frac {\left (c d^2+2 c e x d+a e^2\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {c d^2+2 c e x d+a e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{c d}-\left (\frac {3 a e^2}{c d}+7 d\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c d}+\frac {e x \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 c d}}{e^3}-\frac {2 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^3 (d+e x) \left (c d^2-a e^2\right )}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\frac {3 \left (a^2 e^4+2 a c d^2 e^2+5 c^2 d^4\right ) \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 c^{3/2} d^{3/2} \sqrt {e}}-\left (\frac {3 a e^2}{c d}+7 d\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c d}+\frac {e x \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 c d}}{e^3}-\frac {2 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^3 (d+e x) \left (c d^2-a e^2\right )}\)

input
Int[x^3/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]
 
output
(-2*d^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(e^3*(c*d^2 - a*e^2)* 
(d + e*x)) + ((e*x*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(2*c*d) + 
(-((7*d + (3*a*e^2)/(c*d))*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + 
(3*(5*c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e* 
x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) 
])/(2*c^(3/2)*d^(3/2)*Sqrt[e]))/(4*c*d))/e^3
 

3.5.70.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 

rule 1213
Int[(x_)^(n_.)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^ 
2)^(p_), x_Symbol] :> Simp[-2*(-d)^n*e^(2*m - n + 3)*(Sqrt[a + b*x + c*x^2] 
/((-2*c*d + b*e)^(m + 2)*(d + e*x))), x] - Simp[e^(2*m - n + 2)   Int[Expan 
dToSum[((-d)^n*(-2*c*d + b*e)^(-m - 1) - e^n*x^n*((-c)*d + b*e + c*e*x)^(-m 
 - 1))/(d + e*x), x]/Sqrt[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e} 
, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[m, 0] && IGtQ[n, 0] && EqQ[m 
+ p, -3/2]
 

rule 2192
Int[(Pq_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = 
Expon[Pq, x], e = Coeff[Pq, x, Expon[Pq, x]]}, Simp[e*x^(q - 1)*((a + b*x + 
 c*x^2)^(p + 1)/(c*(q + 2*p + 1))), x] + Simp[1/(c*(q + 2*p + 1))   Int[(a 
+ b*x + c*x^2)^p*ExpandToSum[c*(q + 2*p + 1)*Pq - a*e*(q - 1)*x^(q - 2) - b 
*e*(q + p)*x^(q - 1) - c*e*(q + 2*p + 1)*x^q, x], x], x]] /; FreeQ[{a, b, c 
, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]
 
3.5.70.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(513\) vs. \(2(243)=486\).

Time = 0.69 (sec) , antiderivative size = 514, normalized size of antiderivative = 1.90

method result size
default \(\frac {\frac {x \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{2 c d e}-\frac {3 \left (e^{2} a +c \,d^{2}\right ) \left (\frac {\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{c d e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c d e \sqrt {c d e}}\right )}{4 c d e}-\frac {a \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c \sqrt {c d e}}}{e}+\frac {d^{2} \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{e^{3} \sqrt {c d e}}-\frac {d \left (\frac {\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{c d e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c d e \sqrt {c d e}}\right )}{e^{2}}+\frac {2 d^{3} \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{e^{4} \left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\) \(514\)

input
int(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVE 
RBOSE)
 
output
1/e*(1/2*x/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-3/4*(a*e^2+c*d^2) 
/c/d/e*(1/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/2*(a*e^2+c*d^2)/ 
c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)* 
x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))-1/2*a/c*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x 
)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))+d^ 
2/e^3*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)* 
x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-d/e^2*(1/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c* 
d*e*x^2)^(1/2)-1/2*(a*e^2+c*d^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c 
*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))+2*d^3/ 
e^4/(a*e^2-c*d^2)/(x+d/e)*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)
 
3.5.70.5 Fricas [A] (verification not implemented)

Time = 0.66 (sec) , antiderivative size = 758, normalized size of antiderivative = 2.80 \[ \int \frac {x^3}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\left [\frac {3 \, {\left (5 \, c^{3} d^{7} - 3 \, a c^{2} d^{5} e^{2} - a^{2} c d^{3} e^{4} - a^{3} d e^{6} + {\left (5 \, c^{3} d^{6} e - 3 \, a c^{2} d^{4} e^{3} - a^{2} c d^{2} e^{5} - a^{3} e^{7}\right )} x\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \, {\left (15 \, c^{3} d^{6} e - 4 \, a c^{2} d^{4} e^{3} - 3 \, a^{2} c d^{2} e^{5} - 2 \, {\left (c^{3} d^{4} e^{3} - a c^{2} d^{2} e^{5}\right )} x^{2} + {\left (5 \, c^{3} d^{5} e^{2} - 2 \, a c^{2} d^{3} e^{4} - 3 \, a^{2} c d e^{6}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{16 \, {\left (c^{4} d^{6} e^{4} - a c^{3} d^{4} e^{6} + {\left (c^{4} d^{5} e^{5} - a c^{3} d^{3} e^{7}\right )} x\right )}}, -\frac {3 \, {\left (5 \, c^{3} d^{7} - 3 \, a c^{2} d^{5} e^{2} - a^{2} c d^{3} e^{4} - a^{3} d e^{6} + {\left (5 \, c^{3} d^{6} e - 3 \, a c^{2} d^{4} e^{3} - a^{2} c d^{2} e^{5} - a^{3} e^{7}\right )} x\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (15 \, c^{3} d^{6} e - 4 \, a c^{2} d^{4} e^{3} - 3 \, a^{2} c d^{2} e^{5} - 2 \, {\left (c^{3} d^{4} e^{3} - a c^{2} d^{2} e^{5}\right )} x^{2} + {\left (5 \, c^{3} d^{5} e^{2} - 2 \, a c^{2} d^{3} e^{4} - 3 \, a^{2} c d e^{6}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{8 \, {\left (c^{4} d^{6} e^{4} - a c^{3} d^{4} e^{6} + {\left (c^{4} d^{5} e^{5} - a c^{3} d^{3} e^{7}\right )} x\right )}}\right ] \]

input
integrate(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm 
="fricas")
 
output
[1/16*(3*(5*c^3*d^7 - 3*a*c^2*d^5*e^2 - a^2*c*d^3*e^4 - a^3*d*e^6 + (5*c^3 
*d^6*e - 3*a*c^2*d^4*e^3 - a^2*c*d^2*e^5 - a^3*e^7)*x)*sqrt(c*d*e)*log(8*c 
^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a* 
d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2* 
d^3*e + a*c*d*e^3)*x) - 4*(15*c^3*d^6*e - 4*a*c^2*d^4*e^3 - 3*a^2*c*d^2*e^ 
5 - 2*(c^3*d^4*e^3 - a*c^2*d^2*e^5)*x^2 + (5*c^3*d^5*e^2 - 2*a*c^2*d^3*e^4 
 - 3*a^2*c*d*e^6)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^4*d^6 
*e^4 - a*c^3*d^4*e^6 + (c^4*d^5*e^5 - a*c^3*d^3*e^7)*x), -1/8*(3*(5*c^3*d^ 
7 - 3*a*c^2*d^5*e^2 - a^2*c*d^3*e^4 - a^3*d*e^6 + (5*c^3*d^6*e - 3*a*c^2*d 
^4*e^3 - a^2*c*d^2*e^5 - a^3*e^7)*x)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^ 
2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c 
^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2*(15*c^3*d^6 
*e - 4*a*c^2*d^4*e^3 - 3*a^2*c*d^2*e^5 - 2*(c^3*d^4*e^3 - a*c^2*d^2*e^5)*x 
^2 + (5*c^3*d^5*e^2 - 2*a*c^2*d^3*e^4 - 3*a^2*c*d*e^6)*x)*sqrt(c*d*e*x^2 + 
 a*d*e + (c*d^2 + a*e^2)*x))/(c^4*d^6*e^4 - a*c^3*d^4*e^6 + (c^4*d^5*e^5 - 
 a*c^3*d^3*e^7)*x)]
 
3.5.70.6 Sympy [F]

\[ \int \frac {x^3}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {x^{3}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \]

input
integrate(x**3/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)
 
output
Integral(x**3/(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)
 
3.5.70.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^3}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm 
="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.5.70.8 Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 228, normalized size of antiderivative = 0.84 \[ \int \frac {x^3}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {1}{4} \, \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e} {\left (\frac {2 \, x}{c d e^{2}} - \frac {7 \, c d^{2} e^{5} + 3 \, a e^{7}}{c^{2} d^{2} e^{8}}\right )} - \frac {2 \, d^{3}}{{\left ({\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} e + \sqrt {c d e} d\right )} e^{3}} - \frac {3 \, {\left (5 \, c^{2} d^{4} + 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \log \left ({\left | c d^{2} + a e^{2} + 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{8 \, \sqrt {c d e} c^{2} d^{2} e^{3}} \]

input
integrate(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm 
="giac")
 
output
1/4*sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)*(2*x/(c*d*e^2) - (7*c*d^2* 
e^5 + 3*a*e^7)/(c^2*d^2*e^8)) - 2*d^3/(((sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + 
c*d^2*x + a*e^2*x + a*d*e))*e + sqrt(c*d*e)*d)*e^3) - 3/8*(5*c^2*d^4 + 2*a 
*c*d^2*e^2 + a^2*e^4)*log(abs(c*d^2 + a*e^2 + 2*sqrt(c*d*e)*(sqrt(c*d*e)*x 
 - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))))/(sqrt(c*d*e)*c^2*d^2*e^3 
)
 
3.5.70.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {x^3}{\left (d+e\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \]

input
int(x^3/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)
 
output
int(x^3/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)